Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Thanos Dailianis (Ed.)Kelp forest declines have been linked to warming ocean temperatures worldwide. Ocean warming rarely occurs in isolation, so multiple stressor studies are necessary to understand the physiological responses of kelp to climate change. The canopy-forming bull kelp, Nereocystis luetkeana, is going locally extinct in areas of the Salish Sea that are seasonally warm and nutrient poor, while the understory kelp, Saccharina latissima, persists at those sites. Further, nitrogen availability can alter physiological responses of kelps to temperature stress, including alleviating warming stress. We compared the physiological responses of kelp sporophytes to high temperature stress and nitrogen limitation between two populations of N. luetkeana with different environmental histories (warm and nutrient poor vs. cold and nutrient rich) and between two species, N. luetkeana and S. latissima. Using laboratory mesocosms, we tested the interactive effects of short term (8-9 day) exposure of kelp blades to different temperatures: low (9, 13°C), moderate (15, 16°C), and warm (21°C) at two different nitrogen concentrations: low (1-3 μM) vs. high (>10 μM). We examined a wide array of physiological responses: blade growth, photosynthesis, respiration, photosynthetic yield, nutrient uptake, and tissue C:N. Both kelp species responded negatively to elevated temperatures, but not to low nitrogen levels. Blades of both species showed signs of metabolic stress and reduced growth in the warmest temperature treatment (21°C), at both high and low nitrogen levels, suggesting that N. luetkeana and S. latissima are susceptible to thermal stress over short time periods. Populations of N. luetkeana from warm, nutrient poor and cool, nutrient rich areas were equally susceptible to the effects of ocean warming. Our results suggest that nutrient additions may actually reduce kelp performance at supra-optimal temperatures, and a thorough understanding of kelp responses to coastal temperature and nutrient dynamics is needed to guide conservation and restoration actions.more » « less
-
Moura, Mario R. (Ed.)Projecting ecological and evolutionary responses to variable and changing environments is central to anticipating and managing impacts to biodiversity and ecosystems. Current modeling approaches are largely phenomenological and often fail to accurately project responses due to numerous biological processes at multiple levels of biological organization responding to environmental variation at varied spatial and temporal scales. Limited mechanistic understanding of organismal responses to environmental variability and extremes also restricts predictive capacity. We outline a strategy for identifying and modeling the key organismal mechanisms across levels of biological organization that mediate ecological and evolutionary responses to environmental variation. A central component of this strategy is quantifying timescales and magnitudes of climatic variability and how organisms experience them. We highlight recent empirical research that builds this information and suggest how to design future experiments that can produce more generalizable principles. We discuss how to create biologically informed projections in a feasible way by combining statistical and mechanistic approaches. Predictions will inform both fundamental and practical questions at the interface of ecology, evolution, and Earth science such as how organisms experience, adapt to, and respond to environmental variation at multiple hierarchical spatial and temporal scales.more » « less
-
Bivalves frequently withstand shell damage that must be quickly repaired to ensure survival. While the processes that underlie larval shell development have been extensively studied within the context of ocean acidification (OA), it remains unclear whether shell repair is impacted by elevated pCO2. To better understand the stereotypical shell repair process, we monitored mussels (Mytilus edulis) with sublethal shell damage that breached the mantle cavity within both field and laboratory conditions to characterize the deposition rate, composition, and integrity of repaired shell. Results were then compared with a laboratory experiment wherein mussels (Mytilus trossulus) repaired shell damage in one of seven pCO2 treatments (400–2500 µatm). Shell repair proceeded through distinct stages; an organic membrane first covered the damaged area (days 1–15), followed by the deposition of calcite crystals (days 22–43) and aragonite tablets (days 51–69). OA did not impact the ability of mussels to close drill holes, nor the microstructure, composition, or integrity of end-point repaired shell after 10 weeks, as measured by µCT and SEM imaging, energy-dispersive X-ray (EDX) analysis, and mechanical testing. However, significant interactions between pCO2, the length of exposure to treatment conditions, the strength and inorganic content of shell, and the physiological condition of mussels within OA treatments were observed. These results suggest that while OA does not prevent adult mussels from repairing or mineralizing shell, both OA and shell damage may elicit stress responses that impose energetic constraints on mussel physiology.more » « less
-
Synopsis The mechanical properties of intestinal tissues determine how a thin-walled structure exerts forces on food and absorbs the force of food as it enters and travels down the gut. These properties are critically important in durophagous and stomachless fish, which must resist the potential damage to foreign bodies (e.g., shells fragments) in their diet. We test the hypothesis that the mechanical properties of the alimentary tract will differ along its length. We predict that the proximal region of the gut should be the strongest and most extensible to handle the large influx of prey often associated with stomachless fish that lack a storage depot. We developed a custom inflation technique to measure the passive mechanical properties of the whole intestine of the stomachless shiner perch, Cymatogaster aggregata. We show that mechanical properties differ significantly along the length of the alimentary tract when inflated to structural failure, with 25–46% greater maximal stress, strain, extension ratio, and toughness at the proximal (25%) position. We also find that the alimentary tissues (excluding the heavily muscular rectum) are generally highly extensible and anisotropic, and do not differ in wall circumference or thickness along the alimentary tract. These findings contribute to our knowledge of the mechanical properties of fish intestinal tissues and guide future studies of factors influencing the evolution of fish alimentary systems.more » « less
An official website of the United States government
